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ABSTRACT: Linear free energy relationship (LFER)
parameters are routinely used to parametrize physico-
chemical effects while investigating reaction mechanisms.
In this Communication, we describe an alternate
application for LFERs: training sets for model building
in an analytical application. In this study, the sterics,
quantified by Charton parameters (Δv), of nine secondary
chiral alcohol analytes were correlated to the circular
dichroism output from a chiral alcohol optical sensor. To
test the validity of the model, the correlative linear model
was applied to determine the enantiomeric excess of
samples of two alcohols without a priori knowledge of a
calibration curve. The error in this method was
comparable to those of previous experimental methods
(<5%).

Physical organic chemists employ many tools to elucidate
reaction mechanisms. Within this suite of tools, linear free

energy relationships (LFERs) utilize a set of parameters (e.g.,
Taft or Hammett parameters) to quantify a physicochemical
substituent effect (e.g., steric or electronic) in a reference
system.1,2 Establishing correlations between these effect-specific
parameters with measurements of relative free energy in a new
system generates a measurement of the sensitivity to the
substituent effects (slope of the correlation). The interpretation
of this sensitivity and of the correlation goodness-of-fit offers
insight into a reaction mechanism.3−8 However, in addition to
mechanistic insights, LFERs can also be used to quantify a
physicochemical effect for other purposes.7,9−12 For example, in
the closely associated field of quantitative structure−activity
relationships (QSARs), LFERs are routinely employed along-
side computationally derived parameters to build predictive
models for drug interactions.13−19

Recently, Mayr established correlations of nucleophiles
(Nuc) and electrophiles (El) that can be used to predict the
reactivity of Nuc−El combinations in a variety of reac-
tions.20−24 In fact, dating back to the early work of Ritchie25

and Kane-Maquire,26 LFERs have been recognized for their
potential, not merely to analyze trends, but also to predict
reaction rates and thermodynamics. Recent work by Sigman
extended these ideas, demonstrating that multiparameter
models, with both LFERs and parameters derived in silico,
can be used to optimize catalytic reaction condi-
tions.5,8−10,15,27−30 We wondered whether LFERs could

model optical phenomena to generate predictive models, as
has been done with reactivity.
Our group has developed optical assays for enantiomeric

excess (ee) that involve molecular recognition or multi-
component assemblies.6,7,31 Circular dichroism (CD) signal
that arise upon binding of a chiral analyte are correlated to the
sample’s ee values through experimentally derived calibration
curves. To date, efforts to generate structure−activity predictive
models have been primarily focused upon UV and fluorescence
spectra of small organic molecules or assembly.17,32−34 Doing
so with the CD spectra generated from our chiral sensing
systems would remove the necessity to generate a calibration
curve for every unique chiral analyte prior to analysis.
We reasoned that such modeling would be successful because

for each optical-based ee sensor the absorptivity and the
HOMO/LUMO gaps do not change significantly and because
the CD signal modulations are purely dependent on chemical
attributes of the analytes. Thus, the correlation of analyte
structural descriptors (LFERs) with the optical output should
elucidate the physicochemical origin behind the signal
modulation, thereby building predictive models for analytes
not involved in the training set.
In several of our ee sensor studies, we demonstrated

correlations between analyte sterics and the diastereomeric
forms of enantiomeric complexes that result in the different CD
signals.7,11,12The analyte sterics were parametrized with LFERs
such as those of Taft and Charton. Taft parameters were
developed by measuring rates of acid-catalyzed hydrolysis of
substituted methyl esters (RCOOMe), where the changes in
rate were a result of steric interactions between the R group and
the nucleophile.1Charton observed a correlation between Taft
parameters and the van der Waals radii of symmetric
substituents and adjusted the values of the Taft parameters to
agree with their corresponding van der Waals radii.35,36

To explore whether predictive correlations could be created
for CD ellipticities, we examined the multicomponent assembly
shown in Scheme 1. In this assembly, the steric differences in
the R groups on the stereocenter influence the populations of
the diastereiomers of 1 and set a helical twist into the pyridines,
giving rise to exciton-coupled CD. We recently reported that a
3-methyl variant of 2-formylpyridine produced a larger CD
dynamic range and a concomitant lower error in ee
determination.12
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In the present study, we used the 3-methyl variant of the CD-
active assembly with a training set of nine alcohols (Figure 1).
As expected, a correlative trend between the CD signals and the
diastereomeric ratio (dr) was found using a previously derived
equation (Figure 1 and Table 1).6 Given this positive result, we
set out to derive a correlation between the CD signals and
structural parameters, such as Taft and Charton parameters, of
the chiral alcohol analytes. In an attempt to incorporate
computationally generated parameters, we included the use of
sterimol, which provides parameters that describe the fine-
grained three-dimensional structure.37Sterimol can discern
slight substituent steric differences whereas the experimentally
based parameters cannot.
With the large pool of sterimol parameters generated for all

of the chiral alcohols, the “leaps” package in R software was
used to perform a variable selection algorithm. The algorithm
considers all possible regression models with the given set of
variables and uses adjusted R2 and the Bayes information

criterion as selection criteria. To our dismay, the sterimol
parameters were not as strongly correlated to the assembly dr
values as the simpler Charton parameter model was (see the
Supporting Information). We hypothesized this was due to the
thermodynamic nature of the sensor−analyte assembly, for
which numerous conformations of the substituents on the
hemiaminal ether in 1 (R′ and R″ in Scheme 1) are possible.
Although sterimol provides a more detailed steric character-
ization, the descriptors are for a static substituent. In contrast,
the partially experimentally derived Charton parameters better
account for conformational effects. Thus, the Charton
parameters quantifying the steric differences of chiral alcohol
substituents (Δv) were correlated to the assembly dr (R2 =
0.83; Figure 2).35,36,38−40 At this point, we have a correlative
model relating the substituent difference, quantified by Δv, to
the dr that predicts the sensor CD output.

This model was used to generate theoretical calibration
curves for two alcohols that were not in the training set: 2-
butanol and 1-phenylethanol. The difference in Charton
parameter for non-hydrogen groups were used to predict the
CD values of enantiopure (100 and −100 ee) sample from the
aforementioned model. Excitingly, the calibration curves from
the predictive model resembled those from experimental results
(Figure 3). The two test alcohols were chosen to have
substituents within the range of steric sizes taken into account
by the model. With the calibration curves from the predictive
model, unknown samples were determined at 2.27% average
error (Table 2), which is within the margin of error achieved by
experimental calibration curves.11,41 It is worth noting that the
two test alcohols were chosen to be within the range of the

Scheme 1. Multicomponent Assembly Formed with Variants
of Pyridine-2-Carbaldehyde, Di-2-picolylamine, Zn(II), and
a Chiral Alcohol; The CD-Active Hemiaminal Ether Species
Is Shown as 1

Figure 1. The nine alcohols used in the data set and a plot showing
the correlation between the assembly diastereomeric ratio (dr) and
ΔCD. The unit of ΔCD is mdeg.

Table 1. ΔCD and dr Values of the Nine Alcohols Used in
the Correlative Analysis

alcohol ΔCD (mdeg) [1 + log(dr)]−1

2OA 173.26 0.68
2HA 193.50 0.68
2PO 163.02 0.70
MPA 193.53 0.61
PCO 170.33 0.68
MBA 167.06 0.68
PBA 61.80 0.80
PPA 38.36 0.85
4PBA 177.82 0.69

Figure 2. LFER correlating the difference in steric size for substituents
on the stereocenter of a secondary alcohol to the assembly log(dr)
value.

Figure 3. Overlay of calibration curves for 2-butanol (left) and 1-
phenylethanol (right). The theoretical curves were generated with the
predictive model, while the experimental calibration curves were
generated with experimental values.
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model established above. For alcohols with other functionalities
that are not alkyl or phenyl, it is expected that additional data
would be required to extend the range of the current model.
In summary, we found that an LFER removes the necessity

to experimentally generate a calibration curve for an optical
sensor, as steric parameters accurately predicted a chiroptical
response. To our knowledge, this is the first such application of
LFERs, and we are currently applying this approach to our
other CD assays. Importantly, the lesson derived from our
studies is to consider LFERs as model-building data to be used
in statistical analyses and analytical chemistry. Admittedly, this
insight may seem obvious, particularly after nearly 80 years
history of LFERs, but it could reinvigorate the usefulness of this
classic physical organic technique and bring to LFERs increased
power and utility.
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Table 2. Determination of the Errors in ee for 2-Butanol and
1-Phenylethanol Using Calibration Curves Generated by a
Predictive Model

2-Butanol

ee CD calcd ee % error

−60.00 27.16 −62.73 2.73
40.00 −20.71 47.84 7.84

−20.00 9.07 −20.94 0.94

avg: 3.83
1-Phenylethanol

ee CD calcd ee % error

50.00 −19.60 43.56 6.44
10.00 −2.40 5.33 −4.67

−40.00 18.15 −40.33 0.33

avg: 0.70

overall avg: 2.27
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